648 research outputs found

    Finite Random Matrix Theory Analysis of Multiple Antenna Communication Systems

    Get PDF
    Multiple-antenna systems are capable of providing substantial improvement to wireless communication networks, in terms of data rate and reliability. Without utilizing extra spectrum or power resources, multiple-antenna technology has already been supported in several wireless communication standards, such as LTE, WiFi and WiMax. The surging popularity and enormous prospect of multiple-antenna technology require a better understanding to its fundamental performance over practical environments. Motivated by this, this thesis provides analytical characterizations of several seminal performance measures in advanced multiple-antenna systems. The analytical derivations are mainly based on finite dimension random matrix theory and a collection of novel random matrix theory results are derived. The closed-form probability density function of the output of multiple-input multiple-output (MIMO) block-fading channels is studied. In contrast to the existing results, the proposed expressions are very general, applying for arbitrary number of antennas, arbitrary signal-to-noise ratio and multiple classical fading models. Results are presented assuming two input structures in the system: the independent identical distributed (i.i.d.) Gaussian input and a product form input. When the channel is fed by the i.i.d. Gaussian input, analysis is focused on the channel matrices whose Gramian is unitarily invariant. When the channel is fed by a product form input, analysis is conducted with respect to two capacity-achieving input structures that are dependent upon the relationship between the coherence length and the number of antennas. The mutual information of the systems can be computed numerically from the pdf expression of the output. The computation is relatively easy to handle, avoiding the need of the straight Monte-Carlo computation which is not feasible in large-dimensional networks. The analytical characterization of the output pdf of a single-user MIMO block-fading channels with imperfect channel state information at the receiver is provided. The analysis is carried out under the assumption of a product structure for the input. The model can be thought of as a perturbation of the case where the statistics of the channel are perfectly known. Specifically, the average singular values of the channel are given, while the channel singular vectors are assumed to be isotropically distributed on the unitary groups of dimensions given by the number of transmit and receive antennas. The channel estimate is affected by a Gaussian distributed error, which is modeled as a matrix with i.i.d. Gaussian entries of known covariance. The ergodic capacity of an amplify-and-forward (AF) MIMO relay network over asymmetric channels is investigated. In particular, the source-relay and relay-destination channels undergo Rayleigh and Rician fading, respectively. Considering arbitrary-rank means for the relay-destination channel, the marginal distribution of an unordered eigenvalue of the cascaded AF channel is presented, thus the analytical expression of the ergodic capacity of the system is obtained. The results indicate the impact of the signal-to-noise ratio and of the Line-of-Sight component on such asymmetric relay network

    Increasing public and fair access to scientific findings

    Get PDF
    Public and fair access to scientific findings is an increasingly important movement for scientists, researchers, and knowledge workers who can put the findings to good use and build upon the scholarly research to innovate. Choosing the location of the digital repository to house the research articles is an essential part of developing an open access policy for federal agencies. Where the journal articles would reside has been a controversial issue between publishers and Open Access advocates. This poster presents the background of the FASTR Act and the analysis of the scientific data sharing issues among the U.S. government agencies and academic publishers. It also proposes and demonstrates a centralized government-funded repository leading to a faster and wider sharing of scientific research, which enables the continued advance of science, stimulates innovation stimulation, and grows the overall economy

    Toward an efficiently computable formula for the output statistics of MIMO block-fading channels

    Get PDF
    The information that can be conveyed through a wireless channel, with multiple-antenna equipped transmitter and receiver, crucially depends on the channel behavior as well as on the input structure. In this paper, we present very recent analytical results, concerning the probability density function (pdf) of the output of a single-user, multiple-antenna communication. The analysis is carried out under the assumption of an optimized input structure, and assuming Gaussian noise and block-fading. A further simplification of the output pdf expression presented in our last paper is derived, without the need for resorting to involved integration rules over unitary matrices. With respect to the former result, presented at the main track of this conference, the newly derived formula has the appealing feature of being numerically implementable with open access Matlab codes developed at MIT for the evaluation of zonal polynomial

    Information densities for block-fading MIMO channels

    Get PDF

    Rapid optimization of working parameters of microwave-driven multi-level qubits for minimal gate leakage

    Get PDF
    We propose an effective method to optimize the working parameters (WPs) of microwave-driven quantum logical gates implemented with multi-level physical qubits. We show that by treating transitions between each pair of levels independently, intrinsic gate errors due primarily to population leakage to undesired states can be estimated accurately from spectroscopic properties of the qubits and minimized by choosing appropriate WPs. The validity and efficiency of the approach are demonstrated by applying it to optimize the WPs of two coupled rf SQUID flux qubits for controlled-NOT (CNOT) operation. The result of this independent transition approximation (ITA) is in good agreement with that of dynamic method (DM). Furthermore, the ratio of the speed of ITA to that of DM scales exponentially as 2^n when the number of qubits n increases.Comment: 4pages, 3 figure

    Closed-form Output Statistics of MIMO Block-Fading Channels

    Get PDF
    The information that can be transmitted through a wireless channel, with multiple-antenna equipped transmitter and receiver, is crucially influenced by the channel behavior as well as by the structure of the input signal. We characterize in closed form the probability density function (pdf) of the output of MIMO block-fading channels, for an arbitrary SNR value. Our results provide compact expressions for such output statistics, paving the way to a more detailed analytical information-theoretic exploration of communications in presence of block fading. The analysis is carried out assuming two different structures for the input signal: the i.i.d. Gaussian distribution and a product form that has been proved to be optimal for non-coherent communication, i.e., in absence of any channel state information. When the channel is fed by an i.i.d. Gaussian input, we assume the Gramian of the channel matrix to be unitarily invariant and derive the output statistics in both the noise-limited and the interference-limited scenario, considering different fading distributions. When the product-form input is adopted, we provide the expressions of the output pdf as the relationship between the overall number of antennas and the fading coherence length varies. We also highlight the relation between our newly derived expressions and the results already available in the literature, and, for some cases, we numerically compute the mutual information, based on the proposed expression of the output statistics.Comment: 16 pages, 5 figure

    Output Statistics of MIMO Channels with General Input Distribution

    Get PDF
    The information that can be conveyed through a wireless channel, with multiple-antenna equipped transmitter and receiver, crucially depends on the channel behavior as well as on the input structure. In this paper, we derive analytical results, concerning the probability density function (pdf) of the output of a single-user, multiple-antenna communication. The analysis is carried out under the assumption of an optimized input structure, and assuming Gaussian noise and a Rayleigh block-fading channel. Our analysis therefore provides a quite general and compact expression for the conditional output pdf. We also highlight the relation between such an expression and the results already available in the literature for some specific input structure
    • 

    corecore